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A periodic model of rail track in the form of an infinite Timoshenko beam held by massive elastoviscous supports with constant 
spacing is considered. The sprung part of the carriage is separated from the wheel by an elastic spring, and its action on the 
wheel in a first approximation is therefore represented by a static load. The steady vertical vibrations of the rail under the action 
of an infinite train of wheels moving uniformly over the rail are investigated. The distances between the wheels are identical, 
and all the wheels have the same mass and carry the same load. The static stiffness of the track over a sleeper exceeds that of 
track in the space between sleepers. Therefore, under the action of a constant load, each wheel performs vertical parametric 
vibrations with the frequency of passage of the sleepers. These vibrations are an extension of parametric vibrations described 
using the well-known Mathieu and Hill equations. © 2005 Elsevier Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider the motion of an infinite train of wheels with spacing h along a rail track with a sleeper spacing 
I. Each wheel has a mass m0, carries a constant load a0 and moves without detachment from the rail at 
a constant non-zero speed v0- Between the wheel and the rail an elastic interaction occurs which is 
modelled using a linear contact spring with stiffness kc. The longitudinal coordinate will be denoted by 
x and the time by t. Let the point x = 0 coincide with one of the sleepers (Fig. 1), and the time t = 0 
correspond to the passing of the "zeroth" wheel over the point x = 0. 

The force with which the wheel acts on the rail has a period l/a~ o. A positive direction of this force 
corresponds to stretching of the contact spring. The forces acting on the wheel and on the rail are 
opposite to one another (Fig. 1). We will represent the periodic force with which the zeroth wheel acts 
on the rail in the form of a Fourier series 

+" ri2rrmVot'~ ( l )  
f° ( t )  = -a° Y~ Fmexp~ -l )' f ° t  + ~o = fo(t) (1.1) 

Each term of the series has a period l/v o. The dimensionless Fourier coefficients Fm are to be 
determined. 

The vertical deflection of the zeroth wheel is defined by the differential equation 

d2Yo(t) +oo {i2rcm Oot'~ 
no - - a o + a o  IF. Fmexp~ 7 ) (1.2) 

dt 2 

If F 0 = 1, this equation has a limited periodic solution. 
The first wheel follows the zeroth wheel and proceeds to a fixed point of the rail with a delay of h/aJ 0. 

The forces with which these two wheels act on the rail are related by the equalityfl(t) = fo(t - h/vo). 
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Fig.  1 

The quantityf0(t - nh/ago) is equal to the force of interaction of the rail and the wheel having the number 
n. Thus, the load on the rail from the infinite train of wheel is equal to 

q(x, t) = Z f o ( t -  nh l l~o)~(x -  rot + nh) (1.3) 
I I  = - - ~  

The Dirac function ~(x - Vot + nh) specifies the concentrated force at the point xn = X)ot - nh of contact 
of the rail and the wheel with number n. 

The right-hand side of equality (1.3) does not change when t is replaced by t + hA)o and n is replaced 
by n + 1 simultaneously, nor when t is replaced by t + l/vo and x by x + l simultaneously. Thus, the 
pressure of the wheels on the rail satisfies the following two periodicity conditions 

q(x , t+MOo)  = q(x , t ) ,  q ( x + l , t + l l o o )  = q (x , t )  (1.4) 

2. T H E  S T E A D Y  V I B R A T I O N S  OF T H E  R A I L  T R A C K  

We will represent a sleeper as a concentrated mass held by a parallel spring and damper, and the rail 
as a Timoshenko beam of density per unit length P0. The upward transverse deflection of the rail will 
be denoted byy(x, t). The equation of the vertical vibrations of the rail has the form [1] 

E j ~ 4 y ( x , t )  ,~ ~2y(x, t )  P ( J  E j ] ~ 4 y ( x , t )  
~X 4 I- VO ~t 2 -- 0 ~  + "~  J ~X2~"~t~ 

PoJ32q(x, t) EJ~Zq(x,  t) 
= q(x, t) + RA 3t 2 R ~x 2 

2 4 
P0J0 y(x,  t) 

- -  - 1 -  - -  

RA ~t 4 
(2.1) 

where EJ is the flexural stiffness of the rail, E is modulus of elasticity and J is the moment of inertia of 
the cross-section of the rail. The quantityR = k 'GA is called the shear stiffness, G is the shear modulus, 
A is the rail cross-sectional area and the coefficient k' takes into account the non-uniformity of 
distribution of the shearing force over the cross-section. The right-hand side of Eq. (2.1) satisfies 
conditions (1.4). Consequently, the left-hand side and the solution of the equation likewise satisfy these 
conditions. Thus, the transverse deflection of the rail satisfies two periodicity conditions 

y(x,  t + MOo) = y(x,  t), y (x  + l, t + l/Oo) = y(x,  t) (2.2) 
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The first condition can be explained by the fact that identical wheels, having the same speed and 
carrying an identical load, pass over an arbitrary point of the rail x in equal time intervals h/vo. Hence, 
we can confine ourselves to the time interval 0 < t < h/a)o. The second condition is a special case of the 
condition of steady vibrations of the rail that was examined in detail in [1]. If we assume that h > 1, then, 
in the above-mentioned time interval, on the rail segment 0 < x <_ l, bounded by two neighbouring 
sleepers, only the zeroth wheel will be there. Consequently, on the right-hand side of formula (1.3) we 
need only retain one non-zero termfo(t)~(x - Vot) corresponding to n = 0. According to formula (1.1), 
it is possible to adopt, as the load applied to a section of rail, the quantity 

+o~ i i2nmOot ,  
q ( x , t )  = - • Fmqm(X,t  ), qm(X,t)  = aoexp~ ~ ) ~ ( X - O o t  ) (2.3) 

In view of the linearity of the problem, we will represent the transverse deflection of the rail in the 
form 

y(x,  t) = - E Fnyn(X' t) (2.4) 

where y~(x, t) is the transverse deflection of the rail under the action of the load qn(X, t) that satisfies 
the two conditions (2.2). The quantitiesyn[x, t) andgn(X, t) satisfy Eq. (2.1). 

The partial derivatives by(x, t)/Ox and O~y(x, t)/Ox~have discontinuities at the points where the rail 
rests on sleepers. Therefore, the second condition of (2.2) leads to a boundary-value problem on the 
section 0 < x _< l with the following boundary conditions: 

3Jy(l, t + l/Uo) _ ~Jy(O, t) 
- - + ~ j k ( t ) ,  j = 0 , 1 , 2 , 3  

OxJ 3xJ (2.5) 

_ _  , O y ( O ,  t )  k( t )  = pll o2y(0't)  + r t ~  + uly(O, t), ~c 0 O, ~1 -R - l ,  ~2 O, 1¢ 3 (EJ) -1 
~t 2 = = = = 

The values of the partial derivatives mentioned earlier are taken at the point x = 0 to the right, and 
at the point x = l to the left. The quantities Pll, rl and ul are the sleeper mass, the damper viscosity 
and the spring stiffness, expressed in terms of the parameters of the corresponding homogeneous 
elastoviscous base. The solution of the boundary-value problem, analogous to the problem investigated 
in [1], is extended to arbitrary values ofx and t using periodicity conditions (2.2). The boundary conditions 
(2.5) have no meaning when v0 = 0. 

We will change to dimensionless time T = Vot/l and dimensionless longitudinal coordinate X = x/l. 
Note that the dimensionless longitudinal coordinate of the zeroth wheelX0 = xo/l = a)ot/l coincides with 
T. We will assume that 

~ ( l ( X -  T)) = a ( X -  T)/I,  ~ ) (X-  T) = • ( T -  X)  

The dimensionless quantity Yn(X, T) = yn(x, t)/l satisfies the equation 

O4yn(X , T) O2yn(X , T) _ (~ .O4yn(x  , T) + ~j]tO4yn(x, T) 

OX 4 ~ o~ OT 2 + ~) OX2--~T~ OT 4 

/ / °2// 
= A0 I + V  f3d-~2 ~-~z e x p ( i 2 n n T ) 6 ( X - T ) ,  0<X_<I  (2.6) 

2 2 2 2 aol2 
- P°°°I P°U° P°U0 A0 = _ 7 

e J  ' ~ : E A '  7 = R ' --~--f, V - ~  

the two periodicity conditions 

Y , ( X , T + H )  = Yn(X,T) ,  H = h/l, Y n ( X + I , T + I )  = Yn(X ,T)  (2.7) 
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and the four boundary conditions 

oJYn(1, T+ 1) oJYn(O, T) 

OX j OX j 
+ K j K ( T ) ,  K 0 = 0, K 1 = -~ ,  K 2 = 0, K 3 = 1 

j 0, 1,2,3;  K(T) K202yn(O, T) . OYn(O, T) 
= = OT 2 + K 1 ~ + KoYn(O, T )  (2.8) 

u14 rVo 13 Pl °~ 12 
K° = E-]' K1 = -'-E-]'-' K2 - EJ  

According to the first periodicity condition (2.7), the quantity Y~(X, T) can be represented in the 
form of a Fourier series 

+ ~  

2rcs (2.9) Y,,(X, T) : ~.~ Cs,,(X)exp(ido:T); dos : "-'ff- 
S = - - o o  

with unknown coefficient Csn(X), which satisfy the equality 

H 
1 

Cs,,(X) = ~II  Y.(X,  T)exp(- idosT)dT 
0 

(2.10) 

3. S O L U T I O N  OF T H E  B O U N D A R Y - V A L U E  P R O B L E M  F O R  s ;e 0 

Let us calculate the Fourier coefficients Csn(X). For this, we multiply Eq. (2.6), the four boundary 
conditions (2.8) and also the second periodicity condition of (2.7) by the quantity (exp(-idosT)dT/H and 
integrate from zero to H. Note that integration of the first condition of (2.7) leads to an identity. 
Integrating by parts and taking into account equality (2.10), we obtain the ordinary differential equation 

d4Csn(X) d2Csn(X) 
- -  + ( B  + F ) - -  

d X  4 dX 2 
A° ~(0~.  - B)) exp ( - iOs,  X ) + ( B F - A ) C s , , ( X  ) = ~ ( I  + 

Os, = O s -2 r tn ,  A = ~do~, B = [~do2, F = yq5~ 

The four boundary conditions 

dJcs,,( 1 ) d/Cs,(0) 
exp(iOs) 

dX j dX j 
- -  + KjK.(dos)Cs,(O), j = 0 , 1 , 2 , 3  

= _ dO s K 2 + ldosK 1 + K o K,(dos ) 2 . 

define, on the section 0 ___ X __ 1, the boundary-value problem for this equation. 
Integration of the second condition of (2.7) leads to the equality 

exp(iOs)Csn(X + 1) = Csn(X) 

(3.1) 

(3.2) 

If the integer variables s is zero, then dos = 0, and on the left-hand side of the ordinary differential 
equation only the first term is retained. First, we will solve this problem for the condition that s e 0. In 
this case 

1 + ~(Os2n - B) Ao 
Csn(X) = -~(exp(- ldosnX)-  J (Os)N(X,  Os))Ps.,  Psn : Ls n 
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1 - X ) )  + e x p ( - i O s ) s h ( o l X  ) 
2(O~ + (~22)N(X, (I)s) = (1 -VO~) sh(gl(O.l(COS(i) s _ ch(~l) 

2. sin((~2( 1 - X ) )  + e x p ( - i O s )  s in(cyeX) ~ 1 
--(1 +~IJ(Yl) ~2-~S(I)-~_ ~ J ,  J(CI)s) = l/K.(~s)+N(O, Cl)s) 

2 ~  = ((B - F) 2 - 4 A )  '/2 + (B + F), L s n  = cI)~n - (B + F)(I)2n + BF - A 

On the section 0 < X < 1, we have the following expansion in a Fourier series 

exp(iOsN)N(X, Os) = 
+ o o  

Y~ Qs,nexp(i2rcmX), Qsm = 
I n  = - - o o  

1 + ~ ( ( O s  2 - B - F ) )  

Lsm 

using which we reduce the solution of the boundary-value problem to the form 

Csn(X) = exp(-iOs,X)- QsmeXp(-iOsmX) Psn (3.3) 

The right-hand side of Eq. (3.3) satisfies condition (3.2). Consequently, the solution of the boundary- 
value problem in the form (3.3) can be used for any values of X. 

4. SOLUTION OF THE BOUNDARY-VALUE PROBLEM FOR s = 0 

When s = 0, the solution of (3.3) no longer has any meaning, while the ordinary differential equation, 
boundary conditions (3.1) and equality (3.2) acquire the form 

d4 C°n( X) AH ( 1 - +~(2nn)2)exp(i2nnX), O < X < I  
dX 4 

dJCon(1) dJCon(O) 

dX j dS j 
- -  + KjKoCon(O), 

A o 
Con(X) = -~Pon(exp(i2r~nX)-1), 

j = 0,1,2,3; Con(X+I) = Con(X ) 

1 + ~l/(2/~n) 2 
P0n = -, n~O 

(2/tn) 4 

(4.1) 

Aof 1 ~ X  + 1 - 1 2 ~ X 2  1 X 3 
Coo(X) -.= " ~ 0  + ~ _ _  ---~ +~4X4/ 

The coefficient Con(X) is a periodic function. Consequently, the expression obtained for it holds for 
any value of X. The coefficient C00(X) takes equal values at the ends of the section, which is consistent 
with the boundary conditions. Expanding this coefficient in a Fourier series, we obtain its representation 
in the form of a periodic function 

' / Coo(X) = H~Ko + ~-~ + ~ -  ~ Pomexp(i2~mX) (4.2) 
m~O 

which again holds for any value of X. 

5. TRANSVERSE DEFLECTION OF THE RAIL 

We substitute expression (3.3), expression C0n(X) from (4.1) and expression (4.2) into equality (2.9). 
Changing the order of summation, we obtain 

Ao +~ 
Yn(X'T) = -~ E exp(i2rcmX)W(m,n,T-X) (5.1) 

m = - c o  
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W ( m , n , T - X )  = S ( m , n , T - X ) ,  m a n ,  m~0,  n ~ 0  

W(n, n, T -  X) = S(n, n, T -  X) + P0~, W(0, n, T -  X) = S(0, n, T -  X) - Pon, 

W ( m , O , T - X )  = S ( m , O , T - X ) - P o m  , m~O 

W ( O , O , T - X )  = ~-o + +.~--f6+S(O,O,T-X) 

S(m, n, T - X) = ~ (U~(m, n) - J(Cbs)Qsm)Psnexp(i~(T- X)), 
s ¢ O  

n~O 

tIJ(m'n)={ 1'0, mcnm=n 

The quantity W(m, n, T - X )  is represented by a series and can be calculated approximately by replacing 
the series S(m, n, T - X)  by the sum of a finite number of terms. 

We divide both sides of equality (2.4) by l. We then replace Yn(X, 7/3 using equality (5.1). As a result, 
we obtain the dimensionless transverse deflection of the rail 

Y(X ,T )  - y (x , t )  _ Ao +~ +~ 1 H ~ exp(i2/tmX) E F~W(m, n, T - X )  (5.2) 
m = - ~  n = - o o  

In equality (5.2), the variables X and T are arbitrary numbers. Replacing X by T, we obtain the 
dimensionless transverse deflection of the rail at the point of contact with the zeroth wheel 

Y(T, T) = A° +~ +~ - - ~  ~ ,  exp(i2nmT) ~ FnW(m ,n, 0) (5.3) 

6. INTERACTION OF THE WHEEL AND RAIL 

Integrating Eq. (1.2) twice and changing to dimensionless variables, as a result of integration and formula 
(1.1) we obtain the dimensionless vertical deflection of the zeroth wheel and the dimensionless force 
of interaction of this wheel and the rail 

Fmexp(i2~mT) moO21 
Y°(t) Ao ~,, Mo - (6.1) 

Y°(T) - l - M0(2nm) 2 ' EJ 
m~O 

fo ( t ) l  2 +~o 
F ° ( T ) -  EJ - -A°  ~ Fmexp(i2rcmT) (6.2) 

A contact spring connects the wheel and the rail. The strain of the spring is equal to the quantity 
fo(t)/kc. The difference between the vertical deflections of the zeroth wheel and the rail at the point of 
its contact with the wheel is equal to this quantity. The corresponding dimensionless quantities, 
represented in the form of Fourier series (5.3), (6.1) and (6.2), are related by the equality 

Yo(T) = Y(T, T) + Fo(T)IKc, K c = kcl3/(EJ) (6.3) 

Equality (6.3) holds if the coefficients of exp(i2nmT), where m ~ 0, are equal on its left- and right- 
hand sides. Taking into account also the equality F0 1, we obtain the infinite system of equations 

1 1 ~F m+ 1 W(m,O,O) 
~1 ~ ' F n W ( m ' n ' O )  = H , m¢O (6.4) 

F'c Mo(2nm) 2: ,~o 

for determining the infinite number of unknown coefficients Fro. The only method of solving the infinite 
system of equations (6.4) is to approximate it by a finite system of equations. Taking into account that 
1 < I m I -< N and 1 <_ ] n [ --- N, we obtain a system of 2N equations containing 2N unknown coefficients. 
Solving the finite system of equations, we calculate these coefficients. Increasing N and assessing the 
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effect of this increase on the coefficients already calculated, we can achieve the required accuracy. We 
then assume that N = 5. 

The coefficients Fm and/7_ m a r e  complex-conjugate quantities. The real quantity Fmexp(12~tmT) + 
F_mexp(-i2m/T) determines the harmonic component of the force of interaction of the wheel and the 
rail m, which has the dimensionless amplitude 2 IF,, I. Figure 2 shows the results of a calculation of this 
amplitude (m = 1, 2) as a function of the speed v0 for the following parameters of the rail track [2]: 

EJ = 3.57 x 106 N m z, A = 0.006 m 2, 90 = 48 kg/m, k' = 0.34, l = 0.8 m 

u = 40 x 106 N / m  2, 91 = 43.6 kg/m, r = 26 x 103 N s /m 2 

and a wheel mass m0 = 700 kg with a wheel spacing h equal to five sleeper spacings l (the solid curves) 
and with h = 10/(the dashed curves). The difference between the solid and the dashed curves is a 
consequence of dynamic interaction of neighbouring wheels. The moving wheel generates travelling 
waves in the rail, which act on the neighbouring wheels. These waves attenuate due to damping of the 
sleepers. Transfer to the case h = 15/leads to a barely appreciable change in the curves. When the 
wheel spacing is increased further, the curves hardly change. Thus, which h = 15/, the interaction of 
the wheels is negligible. 

In the problem examined, the dimensionless quantity H = h/l is an arbitrary positive number. If 
H ~ ~,  the series given in the previous section are converted into the corresponding improper integrals 
obtained earlier [1] using the integral Fourier transformation and describing the motion of a single wheel 
over the rail track. For a fairly high value of H, these series serve as an approximation of the improper 
integrals, which shortens the calculations several fold. In subsequent calculations we will assume that 
H > 20 and consider the motion of a single wheel. 

For a numerical investigation of the rail track dynamics, we will consider the finite section of the 
track, the ends of which are fastened by some method. The waves which arise when the wheel and track 
interact are reflected from the ends of the section of track. The reflected waves distort the results of a 
numerical investigation. Replacing the fastening of the ends of the track section by the condition of 
periodicity, Ripke [3] examined two cases of such conditions: 

+y(x, t + h i%)  = y(x, t) 

In the first case, the boundary conditions at the start of the section and the boundary conditions at 
the end of the section are assumed to be identical. Thus, a track section whose length is a multiple of 
the sleeper spacing was replaced by a ring or "squirrel wheel". The motion of one wheel in this ring is 
equivalent to the previously examined motion of an infinite wheel-train with a spacing between wheels 
equal to the length of the ring along an infinite track. Travelling waves act on the wheel. A numerical 
investigation showed that this effect is negligible if the length of the ring h __ 15/, which is consistent 
with the investigation given above. In the second case the boundary conditions at the ends of the track 
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section were assumed to be opposite in sign. In this case, the track is represented as being laid on the 
well-known MObius surface. 

7. THE C H A N G E  IN THE STATIC STIFFNESS OF THE TRACK. 
THE C O N N E C T I O N  WITH THE M A T H I E U  AND HILL EQUATIONS.  

THE STABILITY OF M O T I O N  

In equality (5.3) we will replace the dimensionless time T by the dimensionless coordinate of the wheel 
Xo = Vot/l. We will fix X0. Let v0 --+ 0. Then the dimensionless parameter M0 ~ 0, and the time 
t = Xol/v o ~ oo. Furthermore, the quantities A, B, and F approach zero, while Lsm , K,(OPs)and 
N(O, 0~) respectively are converted into O4m, K0 and 

1 - 6 ~  + 1 

12(cosqb~- 1) 4(coSqbs_ 1) 2 

If the wheel spacing h and the sleeper spacing l are incommensurable, the quantity ~4 m does not vanish, 
which makes it possible to use the formulae given above. By taking the limit, we establish that F m = 0 
for all non-zero values of m. Furthermore, F0 = 1. Thus, equality (5.3) is converted into the following 
equality 

A o  + ~  
Y(Xo, Xo) = - ~  ~" exp(i2nmXo)W(m,O, 0) (7.1) 

m = - ~  

and the periodic quantity 

C( Xo) = -Ao/Y( Xo, X o) (7.2) 

is the dimensionless track stiffness at the point X0. 
The left-hand part of Fig. 2 shows the change in the dimensionless track stiffness C(Xo) in the period 

0 <_ X < 1. Curve 1 corresponds to the results of a calculation taking into account the shear strain in 
the rail. The greatest value of C(Xo), equal to 8.669, is reached at points 0 and 1, which correspond to 
neighbouring sleepers. The lowest value of 8.050 at point 0.5 corresponds to the mid-span between 
sleepers. The change in stiffness, referred to its average value, is small (0.0741). Curve 2 is the result 
of a calculation ignoring the shear strain in the rail. The greatest value of 8.976 and the lowest value 
of 8.678 of the dimensionless track stiffness are reached at the same points. The absence of shear strain 
in the rail leads to an insignificant increase in the average track stiffness, which is largely determined 
by the flexural strain of the rail. Here, the relative change in stiffness, equal to 0.0338, is more than 
halved. Thus, the periodic change in rail track stiffness is largely connected with shear strain in the rail. 

It is possible to arrive at the same result in a different way. We will retain the non-zero value of the 
speed of the wheel. We will ignore the mass of the wheel, rail and sleepers, and also the contact stiffness 
and viscous resistance of the track. Then the vertical deflections of the wheel and rail are equal, the 
quantities A, B, F and M0 again vanish and consequently equalities (7.1) and (7.2) are retained. Thus, 
the transverse deflection of the rail is the same as its static deflection, i.e. the movement of the rail is 
quasi-static. 

Once more, we will take into consideration the mass of the wheel and we will change, in equality 
(7.2), to dimensional quantities. Motion of the wheel over the rail leads to a periodic change in track 
stiffness at the point of contact. In the quasi-static approximation under examination, the vibrations of 
the wheel are similar to the vibrations of a concentrated mass loaded with a constant force and supported 
by a weightless spring with periodically changing stiffness. Thus, the vertical deflection of the wheel 
yo(t) is defined by an ordinary second-order linear differential equation 

+ EJ Oot d2yo(t) ?C(._~_)yo(t)  =_ao 
mo dt2 (7.3) 

with a constant right-hand side and a periodic coefficient aty0(t). If the periodic coefficient is expanded 
in a Fourier series, the left-hand side of Eq. (7.3) is identical with the left-hand side of Hill's equation 
[4, 5]. If, in the Fourier expansion, only the constant term and first harmonic are retained, the left-hand 
side of Eq. (7.3) will be identical with the left-hand side of Mathieu's equation [5, 6]. Note that the 
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periodic coefficient can also be determined by representing the reactions of the sleepers using a series 
of Dirac functions with spacing l [7]. 

If the damping of vertical vibrations of the wheel is taken into account a first-order derivative appears 
in Eq. (7.3). With light damping, the solutions of the Hill and Mathieu equations may be unstable [4, 
5] and increase without limit. The vertical vibrations of a solid wheel moving over rail track may also 
be unlimited. Note that the stability of the periodic model of a rail track has been investigated asymp- 
totically [8.9]. The motion of a mass along a beam lying on a periodically inhomogeneous viscoelastic 
base was considered in [9]. Numerical investigation of the monodromy matrix of differential equation 
(7.3) with damping confirmed the stability of the vibrations of the wheel for the track and wheel 
parameters given above [10]. The conclusions reached relate to the case where the unsprung part of 
the carriage is represented only by a single mass m0. If account is taken of the bending of the axle of 
the wheel pair and one mass is replaced with two masses, related, respectively, to the wheel and axle 
box and connected to each other by a spring, then damping of one of the two masses representing the 
box may prove to be insufficient, and the entire system may be unstable. 

Note the stability of the motion of an unloaded wheel along a rail supported by periodically positioned 
sleepers can be investigated by writing the second equality of (2.2) in the generalized form 

yn(x  + l, t + l /vo)  = RYn(X, t) 

where R is a dimensionless complex coefficient. In this case, the problem is reduced to the system of 
equations (6.4) with zero right-hand sides. The coefficients of this system depend on the assumed 
parameters of the track, on the mass and speed of the wheel and also on the dimensionless coefficient 
R. If the homogeneous system (6.4) has a non-zero solution provided that IRI > 1, then the quantity 
yn(x, t) increases exponentially, and the motion of the unloaded wheel turns out to be unstable. Note 
that, in the earlier investigation of the motion of an unbalanced wheel along a rail track [1], the analogous 
complex coefficient was equal to unity in absolute magnitude. 
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